Enhanced isolation performance of geologic CO₂ storage sites through mineral trapping:

Experimental & field confirmation of model predictions

James W. Johnson¹ Kevin G. Knauss¹ S. Julio Friedmann¹ Scott H. Stevens²

¹Lawrence Livermore Nat'l Lab ²Advanced Resources Int'l, Inc.

Fourth Annual Conf. Carbon Capture & Sequestration May 2-5, 2005 Alexandria, VA

Cap rock integrity hinges on the interplay of geochemical & geomechanical processes

Geochemical alteration

- Mineral diss/pptn reactions triggered by the chemical perturbation
- Compositional properties of the cap rock, reservoir, & injection fluid
- ✓ Tends to enhance seal integrity of shale

Geomechanical deformation

- Microfrac mobilization triggered by the pressure (effective stress) perturbation
- ✓ CO₂ influx rate, duration, & focality; reservoir perm & lateral continuity
- ✓ Tends to degrade seal integrity of shale
- Relative effectiveness controls the evolution of cap rock integrity

Reactive transport modeling of geologic CO₂ sequestration at Sleipner

Mineral trapping significantly enhances the seal integrity of shale cap rocks

Batch reactor experiments provide a physical analog to cap-rock/reservoir interface environs

Integrated expt/modeling assessment of key mineral-trapping predictions

Reactive transport modeling

- ✓ Conduct spatially scaled Sleipner simulations
- ✓ Identify optimal experimental P-T-t framework
- ✓ Predict geochem evolution (pre- & post-expt)

Baseline experiments

- Mimic Sleipner models at elevated P-T
- Synthetically-prepared samples
- ✓ Known grain size & BET surface areas

• Initial baseline variants

- ✓ Address key compositional variations
- ✓ Carbonate cements, silicate Fe/Mg ratio

Secondary baseline variants

- ✓ Address natural system complexities
- Complex solid solns, trace mins, heterogeneity
- ✓ Frio, McElmo, & Teapot Dome core samples

Reactive transport modeling of baseline experiments using NUFT/GEMBOCHS

Synthetic crushed sandstone

- √ 35% porosity, 3-darcy perm
- ✓ 80% qtz, 10% K-feld, 5% plag-Ab80, 3% muscovite, 2% phlogopite
- √ seawater-like fluid comp

Synthetic crushed shale

- √ 10% porosity, 0.75-darcy perm
- ✓ 60% clays (50% muscovite, 10% Mg-chlorite),
 35% quartz, 5% K-feldspar
- ✓ fluid composition identical to sandstone

Simulation P-T & influx conditions

- √ 37°C, 100 bars
- √ CO₂ influx event: minutes
- ✓ Post-influx duration: 1.5 y

Favorable conditions for mineral trapping are established during brief influx event

Slow mineral diss/pptn kinetics at typical field conditions necessitate elevated expt'l temps

Dawsonite

- ✓ Initial pptn in sh at 14 d
- ✓ Initial pptn in ss at 87 d
- ✓ Vol.%: 10⁻³ at 1.5 y

Magnesite

- ✓ Initial pptn at in sh at 1 y
- ✓ Vol.%: 10⁻⁴ at 1.5 y

Experimental requirements

- ✓ Duration: weeks-months
- ✓ Vol.%: 0.5-1.0 (XRD)
- ✓ Elevated temperatures!

The challenge of space, time, & complexity scale-up from lab to field simulations

Lab-scale simulations

- ✓ Init/bdry conds are <u>established</u>: por/perm, comp, flow, P-T, stress
- ✓ Perturbation event often observed & sampled <u>directly</u> in situ in its entirety
- Mass/ener redistribution processes often can be evaluated independently
- Resolution of prediction/observation discrepancies: model fine-tuning

Field-scale simulations

- ✓ Init/bdry conds are <u>poorly known:</u> sparse sampling, extreme heterog.
- ✓ Perturbation event is observed indirectly and sampled at intervals
- ✓ Mass/energy redistribution processes must be evaluated in integrated form
- Discrepancy resolution: tough to distinguish between domain and integrated-model inadequacies

CO₂ reservoirs represent time-integrated natural analogs to engineered storage sites

- ✓ Largest, best-characterized
- √ 20 m pay zone at 2100 m
- Owner/operator
 - ✓ Kinder Morgan CO₂ Co.
- Data access
 - ✓ Advanced Resources Int'l

McElmo Dome database, new EarthVision model, & reactive transport modeling program

Data recently obtained

- Detailed stratigraphy & struct;
 well locations, logs, & fluid/gas
 chemistries (created EV model)
- ✓ Reservoir & cap-rock (!) core samples (and perm data): CB-1

Future data availability

✓ Proposed cap-rock sampling program (Stevens et al.)

Reactive transport modeling

- ✓ Long-term natural CO₂ influx using EarthVision domains
- Focus: impact of min trapping on por/perm, reservoir integrity,
 & cap-rock seal capacity

Preliminary EarthVision geologic model of McElmo Dome: system scale

Preliminary EarthVision geologic model of McElmo Dome: Leadville structure

Preliminary EarthVision geologic model of McElmo Dome: cross-sections

Enhanced isolation performance of geologic CO₂ storage sites through mineral trapping

- Goal: confirm key model predictions
 - Maintain reservoir integrity
 - ✓ Improve cap-rock seal capacity
 - **Experimental assessment**
 - ✓ Batch reactor: from idealized synthetic materials to relevant core samples
 - ✓ Iterative RT modeling to predict & optimize agreement with expt'l results
- Field assessment
 - ✓ McElmo Dome (natural CO₂ reservoir)
 - Evidence of min trapping in shale cap?
 - ✓ RT modeling to predict impact of min trapping on res/cap-rock integrity
- Long-term field-scale models must be grounded by accurate expt'l forecasts

Questions

"The single biggest problem in communication is the illusion that it has taken place."

George Bernard Shaw